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We examine the evolution of the ground state of a Bose-Einstein condensate in a two-dimensional circular
box, the wall of which is initially at rest and then recedes with large and constant speed. The final state of the
condensate depends on the rapidity of the expansion of the box. If the number of atoms in the condensate is
small compared to the dimensionless speed of the wall, then the condensate becomes a mixture of excitations
and follows the expansion of the box, leaving empty though an increasingly larger region between the con-
densate boundary and the wall. If, on the other hand, the number of atoms is large compared to the dimen-
sionless speed of the wall, then the condensate is always in the ground state and spreads uniformly in all of the
expanding box, the condensate boundary always coinciding with the receding wall. Approximate analytic
expressions are found for the evolving wave function.
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I. INTRODUCTION

The recent production of Bose-Einstein condensates in
box traps �1� has created an increased interest in nonlinear
systems confined in such traps, leading, for example, to the
study of the influence of a periodic driving force on these
systems �2�. One-dimensional box traps have attracted inter-
est quite early, because they result in analytic solutions for
the wave functions of the Bose-Einstein condensates �3�. The
evolution of the condensates if the box trap is time varying is
particularly interesting as well, since its study may elucidate
the interplay between the nonlinearity and the dynamics.
This interplay has already been studied for the case of a
particular one-dimensional box, the size of which is first
doubled and then halved �4�. These studies are rendered dif-
ficult though by the fact that the nonlinearities have to be
treated numerically in most of the cases, the time depen-
dence of the boundaries of the box further complicating the
matter.

This work will examine the evolution of the ground state
of a Bose-Einstein condensate with repulsive interactions in
a rapidly expanding two-dimensional circular box, the wall
of which begins at rest and ends up having a large constant
speed. This particular configuration presents the advantage of
having approximate analytic solutions in closed form. Even
though one would naively expect that the adiabatic approxi-
mation does not hold for such a rapidly expanding box,
higher excitations being necessarily involved in the evolution
of the initial ground state, we find that this is not so when the
nonlinearities are sufficiently strong. Indeed, if the repulsive
two-body interactions are very strong, the wave function will
be forced to occupy all the available area, spreading there-
fore uniformly over the rapidly expanding box and adopting
the profile of the ground state. In contrast, if the nonlinearity
is weak and the wall is moving rapidly, the wave function
adopts the profile that is appropriate to the sudden approxi-
mation. Thus the problem becomes similar then to the well-
known linear problem of a quantum particle in a box with
moving walls �5�.

Let us begin with the Gross-Pitaevskii �GP� equation,
which describes the evolution of a Bose-Einstein condensate
confined in a two-dimensional box:

−
�2

2m
�2� + g���2� = i�

��

�t
, �1�

where g is positive �repulsive two-body interactions�, 0
� �r���L�t�, and � is zero when �r���L�t�. The condensate is
confined thus in a circular box with radius L�t�. We expect,
of course, its ground state to be radially symmetric.

This equation is rather difficult to solve if L�t� is arbitrary.
The corresponding linear problem has analytic solutions
though for the particular case that L�t�3d2L /dt2 is constant
�6�. We shall examine thus in this work the particular case
L�t�=L0�1+ �t /T�2 for times t�0 and L�t�=L0 for times t
�0. The wall of the box is motionless for t�0 and ends up
moving finally with a terminal speed L0 /T.

We define the dimensionless variables x= �r�� /L0, �
=�t / �2mL0

2�, l�t�=L�t� /L0, and ��x ,��
=��r� , t��2mgL0

2 /�2 /�0, where the dimensionless parameter

�0 is �0=��0,0��2mgL0
2 /�2. Thus ��0,0�=1 and

0�x� l�t�. The number of atoms in the condensate is N
=����2d2r=�2�0

2�2mg�−1�0
l�t�2�x���x ,���2dx. We note that

in this work l�t�=�1+	2�2 if t�0 and l�t�=1 if t�0, where
	 is the dimensionless parameter 	=2mL0

2 / ��T�.
The GP equation takes thus the dimensionless form

− �x
2� + �0

2���2� = i
��

��
, �2�

where ��0,0�=1, �(l��� ,�)=0. It is this nonlinear partial
differential equation that will determine the condensate wave
function.

II. NEGATIVE TIMES

Let us first solve this equation for times t�0. We shall
assume that the condensate is initially in its ground state,
with ��1,��=0 and ��0,0�=1. Since the condensate is in a*stavrost@ucy.ac.cy
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stationary state, we shall have ��x ,��=e−i
���x�, with ��0�
=1 and ��1�=0. Thus the GP equation reduces to

−
d2�

dx2 −
1

x

d�

dx
+ �0

2�3 = 
� . �3�

This equation cannot be solved analytically due to the
�� /x term, unlike the one-dimensional case �3�. We note,
however, that ��1 and 
��0

2 when the number of atoms is
large enough, since the condensate is then uniform almost
everywhere. For large 
 we expect thus that the derivatives
in the GP equation can be safely neglected almost every-
where.

Nonetheless, we can obtain an excellent analytic approxi-
mation for the ground state ��x� for any value of 
 if we
emulate the curve �3�x� by a piecewise linear function of �
�7�. In other words, we shall replace the nonlinearity �3 with
an appropriate piecewise linear emulator function f���, such
that the integral �0

1[�3− f���]2d� is minimized. If this emula-
tor function is a reasonable approximation to the curve �3,
then good approximate analytic solutions of the GP equation
can be obtained by solving the linear partial differential
equations that result when �3 is replaced by f���.

Let us adopt then the function

f��� = a� + b if �0 � � � 1
�4�

f��� = c� if 0 � � � �0,

requiring that the end points of the continuous function
f��� coincide with the end points of �3. Hence
a= �1−c�0� / �1−�0� and b= �c−1��0 / �1−�0�. We require fur-
thermore that the two curves be as close as possible. We can
achieve this by minimizing the integral of the square of the
difference between the emulated curve �3 and its emulator
f���. We obtain a= �48+13�2� /30=2.212 83,
b=1−a= �−18−13�2� /30=−1.212 83, c= �9−4�2� /15
=0.222 876, and �0= �2�2−1� /3=0.609 476. The corre-
sponding function f��� is then indeed quite close to the func-
tion y���=�3, as can be seen in Fig. 1.

After emulation the GP equation reduces to

−
d2�

dx2 −
1

x

d�

dx
+ �0

2�a� + b� = 
� �5�

if �0���1 and

−
d2�

dx2 −
1

x

d�

dx
+ c�0

2� = 
� �6�

if 0����0. Since the wave function of the ground state is
monotonically decreasing, the solution �in�x� of Eq. �5� will
hold for 0�x�x0, where ��x0�=�0, while the solution �out�x�
of Eq. �6� will hold for x0�x�1.

We can easily solve these two equations, obtaining the
solutions in terms of simple Bessel functions. In the region
0�x�x0 ��x�=�in�x�,

�in�x� = I0�qx� +
�0 − I0�qx0�
I0�qx0� − 1

�I0�qx� − 1� , �7�

with q=�a�0
2−
 and

I0�qx0� = �q2�0 + b�0
2�/�q2 + b�0

2� . �8�

We note that �in�0�=1 and �in�x0�=�0. For large nonlin-
earities �0, we expect �in�x� to be practically uniform and to
extend almost up to the wall x=1. Hence, in that limit, �0

2

�
, rendering I0�qx0� large and hence the denominator q2

+b�0
2 very small, q2+b�0

2�0. Thus

q � �− b
 . �9�

The condition I0�qx0�= �q2�0+b�0
2� / �q2+b�0

2� reduces
then to

�0
2 � 
 − b
��0 − 1�/I0�qx0� . �10�

In the region x0�x�1, ��x�=�out�x�,

�out�x� = �0
J0�kx�Y0�k� − J0�k�Y0�kx�

J0�kx0�Y0�k� − J0�k�Y0�kx0�
, �11�

where k=�
−c�0
2. We note that �out�x0�=�0 and �in�1�=0.

Then continuity of ���x� at x0 requires that

qI1�qx0���0 − 1�
k�0�I0�qx0� − 1�

=
J0�k�Y1�kx0� − J1�kx0�Y0�k�
J0�kx0�Y0�k� − J0�k�Y0�kx0�

. �12�

The parameters x0 and �0 are determined by the simulta-
neous solution of Eqs. �8� and �12�. The resulting analytic
closed-form expressions for the wave function for t�0 pro-
vide very good simulacra to the numerically obtained wave
functions for all values of 
, as shown in Fig. 2 for the
particular choice of 
=64 and �0=7.9982. The numerical
solution was obtained by using the explicit Runge-Kutta
method, the value of �0 having been found iteratively so as
to satisfy ��1�=0.

For large �0, in which case �0
2�
 and k��
�1−c�, Eq.

�12� yields

x0 � 1 −
1

�
�1 − c�
tan−1��0

��c − 1�/b/�1 − �0��

� 1 − 1.016133/�
 , �13�

while Eq. �10� becomes

0.2 0.4 0.6 0.8 1 ζ
0.2

0.4

0.6

0.8

1
y �ζ�

FIG. 1. The curve y���=�3 and its piecewise linear emulator
f���. The solid curve is the line �3, while the dashed one is the
emulator.

STAVROS THEODORAKIS AND YIANNIS CONSTANTINOU PHYSICAL REVIEW E 76, 036205 �2007�

036205-2



�0
2 � 
 − 3.814903
5/4e−�−b
. �14�

This asymptotic expression is fairly accurate, as can be
seen in Fig. 3, where it is compared with the numerically
determined �0.

III. POSITIVE TIMES

The solution given by Eqs. �7� and �11� gives the wave
function at time t�0. The circular box begins expanding
though at time t=0, its radius being l���=�1+	2�2, so that
l���3d2l��� /d�2=	2. Note that l�0�=1 and dl�0� /d�=0. The
solution of Eq. �2� is going to give the wave function for
positive times.

This solution can be obtained through a pseudoconformal
transformation �8� that has been used for the corresponding
linear problem �9�. Indeed, let us define the new variables

x� = x/l��� �15�

and

�� = 	−1 tan−1�	�� , �16�

so that d�� /d�=1/ l���2. We note that 0����
�
2	 . We shall

also define a new wave function ��x� ,��� through the equa-
tion

��x,�� = l���−1��x�,���ei
���x2
, �17�

where


��� =
1

4l���
dl���

d�
=

	2�

4l2���
. �18�

The new wave function ��x� ,��� must satisfy the initial
condition ��x� ,0�=��x ,0�=��x�, hence ��0,0�=��0�=1, as
well as the boundary condition ��1,���=0. In terms of the
new variables Eq. �2� takes the form

−
d2�

dx�2 −
1

x�

d�

dx�
+ �0

2���2� +
	2x�2

4
� = i

��

���
. �19�

We note that the coefficient of the cubic term is time
independent. This is not the case if the dimension of the
system is equal to 1 �8�, leading thus to a qualitatively dif-
ferent behavior for the rapidly expanding one-dimensional
box.

If we define the new variable y=�	x�, then Eq. �19�
reduces to

−
d2�

dy2 −
1

y

d�

dy
+

�0
2

	
���2� +

y2

4
� =

i

	

��

���
, �20�

subject to the conditions ��0,0�=1 and ���	 ,���=0. So for
large 	 the wave function � tends to zero far from the origin.

A. Linear limit „�0
2™�…

If �0
2�	, then Eq. �20� takes the approximate form

−
d2�

dy2 −
1

y

d�

dy
+

y2

4
� = i

��

��	���
, �21�

with � tending to 0 far from the origin when 	 is large.
In other words, if we perform the pseudoconformal trans-

formation mentioned above on the rapidly expanding box,
then we end up with Eq. �21�, an equation describing the
radially symmetric modes of the usual two-dimensional
simple harmonic oscillator. The general solution of this equa-
tion is the superposition of these modes, expressed in terms
of Laguerre polynomials:

��x�,��� � 	
n

cne−i�2n+1�	��Ln�	x�2/2�e−	x�2/4. �22�

Since ��x� ,0�=��x��, where ��0�=1 and ��1�=0, we can
find the coefficients cn:

cn � 

0

1

��x��	x�Ln�	x�2/2�e−	x�2/4dx�. �23�

Even though the various radially symmetric modes vanish
far away from the origin, the coefficients cn are such that the
superposition of these modes in Eq. �22� at time 0 yields
��x��, a function spreading almost uniformly over all of the
box. As time progresses though and �→�, the transformed
time �� tends to � / �2	�. Hence

� → − i	
n

�− 1�ncnLn�	x�2/2�e−	x�2/4. �24�

Thus the profile of � is stabilized as �→�. The coeffi-
cients cn alternate in sign now in the superposition, so �

0.2 0.4 0.6 0.8 1 x

0.2

0.4

0.6

0.8

1
ζ

FIG. 2. The wave function ��x� for 
=64, �0=7.9982 and
negative times. The solid curve is the numerical solution, while the
dashed one is its analytic simulacrum.

10 20 30 40 50 60 β

2

4

6

8

Ψ0

FIG. 3. The value of �0, given by Eq. �14�, compared to the �0

deduced numerically. The solid curve corresponds to the asymptotic
expression, while the points correspond to the numerically obtained
values.
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cannot extend all the way up to the wall, given the localized
nature of the radially symmetric modes. We expect thus the
wave function � of Eq. �22� to freeze in a region around the
origin, leaving a void in the remaining area up to the wall, as
seen in Fig. 4 for the case 
=6 and 	=30.

The radius of the area where the condensate has been
concentrated is of the order of the width of the Gaussian
e−	x�2/4 that appears in Eq. �24�—i.e., x��2/�	 or x
�2l��� /�	. In other words, as time progresses the radius of
the condensate increases at an approximately constant rate of
the order of 2�	, while the wall is receding with speed 	.
The increasing concentration of the condensate is the result
of the destructive interference that takes place between the
various radially symmetric modes of the two-dimensional
simple harmonic oscillator to which the problem has been
reduced.

What essentially happens in this linear region at t=0 is
that the eigenstate basis changes at that instant. Before t=0
the energy eigenstates are the states of a particle in a circular
box. After t=0 the energy eigenstates are the states of an
isotropic two-dimensional harmonic oscillator. As a result of
this abrupt change of basis, the initial ground state of the
stationary box suddenly becomes a superposition of oscilla-
tor states �10�. The interference between these states at vari-
ous moments in time, already explored in detail in the con-
text of the linear Schrödinger equation for a particle in a box
with a moving wall �5,11�, is responsible for the restriction
of the condensate to a small region in the center of the ex-
panding box.

Thus, even though �0
2 may be large, the condensate is in

the linear limit if 	��0
2. Indeed, larger values of 	 at a

particular moment in time imply that the condensate is more
dilute, as it should be in the linear limit. Conversely, smaller
values of �0

2 imply a smaller number of atoms—i.e., a more
dilute condensate again. Thus we can reach the linear regime
either by decreasing �0

2 or by increasing 	, or both. The
linearity or nonlinearity of the system emerges consequently
from the comparison of the quantities �0

2 and 	, just as is the
comparison of the various time scales that determines
whether the dynamics is adiabatic for a Bose-Einstein con-
densate in a time-dependent potential �12�.

Let us illustrate the above results by solving the linear
limit ��0=0� of Eq. �19� numerically, given the initial con-
dition ��x� ,0�=��x��, where � is found by solving Eq. �3�

numerically. There exist solutions that always extend over
the whole area of the box �adiabatic behavior, 	�12�, as
well as solutions that retreat towards the center of the box as
time goes on �sudden approximation, 	�12�. In Fig. 5 such
numerical solutions are shown for 	=5, 	=12, and 	=20, at
times t=� / �2	�, for the case 
=5.783 19 and �0=0. Thus
“large 	” must be taken to mean 	�12, since only then will
the linear problem ��0=0� have its solutions localized near
the center.

B. Nonlinear limit „�0
2š�…

Let us now examine what is expected to happen when
�0

2�	. We begin by finding the profile of the stationary
ground state of Eq. �19�, assuming thus that ��x� ,���
=��x��e−i���, with ��0�=1 and ��1�=0. The resulting
equation

−
d2�

dx�2 −
1

x�

d�

dx�
+

	2x�2

4
� + �0

2�3 = �� �25�

yields the stationary ground state of Eq. �19�.
If �0

2�	, we expect the ground-state condensate to be
quite dense and to spread out uniformly over the box. In
other words, the derivatives in Eq. �25� may be neglected.
Then this equation yields the Thomas-Fermi approximation

�2 � �� −
	2x�2

4
�/�0

2. �26�

Since ��0,0�=1, we must have ���0
2. Hence

��x�,��� ��1 −
	2x�2

4�0
2 e−i�0

2��. �27�

Equation �27� indicates that the boundary of the dense con-
densate is at x��2�0 /	. However, the boundary of the box
is at x�=1.

Thus, if 1�2�0 /	, the natural extent of the condensate is
larger than the size of the box. Hence the circular wall will
cut off abruptly the profile of the condensate, which will
therefore remain uniform over all of the box, going abruptly
to zero at x�=1 and resulting in a negative curvature right up
to the wall, as shown in Fig. 6 for �=400, �0=19.971 65,
	=30, and 2�0 /	=1.33.

On the other hand, if we had 1�2�0 /	, then the natural
extent of the condensate would be smaller than the size of

0.2 0.4 0.6 0.8 1 x′
0.5

1

1.5

2

2.5

3

�ϑ�
Τ��Π��2Ν�

Τ��0

FIG. 4. The wave function ���x� ,���� for 
=6, �0=0.617, and
	=30 for times ��=0 and ��=� / �2	�. The solid curves correspond
to the numerical solutions of Eq. �19�, while the dashed curves
correspond to the analytic expressions of Eq. �22�.

0.2 0.4 0.6 0.8 1 x′

0.5

1

1.5

2

�ϑ�
Ν�20

Ν�12

Ν�5

FIG. 5. The numerical solutions of Eq. �19� for the wave func-
tion ���x� ,����, for 
=5.78319 and �0=0 at times t=� / �2	�, when
	 takes the values 5, 12, 20.
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the box. Hence the condensate would have ample space for
relaxing gradually to zero with positive curvature, long be-
fore having to meet the circular wall at x�=1, as shown in
Fig. 7 for �=64, �0=7.294 653 3, 	=30, and 2�0 /	
=0.486.

We see then that the stationary ground state falls to zero
with negative curvature if 	�2�0, the condensate spreading
out uniformly up to the wall, and with positive curvature if
	�2�0, leaving in that case an empty space between the
boundary of the condensate and the receding wall.

This feature can be seen most clearly in Fig. 8, where we
plot the location of the inflection point of ��x��, found nu-
merically as a function of 2�0 /	 for the particular choice of
	=20. We see that as 2�0 /	 increases, the inflection point
moves quickly towards the wall, where it settles down. Thus
the curvature is negative everywhere for large 2�0 /	, except
for a tiny interval right on the wall, where the inflection point
has settled.

We shall now try to find the solution ��x� ,��� of Eq. �19�
in the nonlinear region, subject not only to the initial condi-
tion ��x� ,0�=��x��, since x=x� at �=��=0, but also to the
boundary condition ��1,���=0. The initial profile ��x��, with
��0�=1 and ��1�=0, satisfies Eq. �3�.

If the initial profile is the stationary ground state of Eq.
�19�, then the matter will be simple enough, since the solu-
tion will be the initial profile multiplied by an evolution
phase factor. Otherwise, the solution will necessarily involve
higher excitations and the solution will be analytically intrac-

table. Let us assume then that ��x� ,���=��x��e−i���. Then
Eq. �19� reduces to

−
d2�

dx�2 −
1

x�

d�

dx�
+

	2x�2

4
� + �0

2�3 = �� . �28�

If we combine, however, this equation with Eq. �3�, we ob-
tain the relation 
+ �	2x�2 /4�=�. This relation is approxi-
mately valid only if

� � 
 �
	2x�2

4
. �29�

Hence ��x� ,��� will not involve higher modes and will be
a stationary ground state only if Eq. �29� is valid at all points
inside the box. Then it must also hold at x�=1. Thus �0

2

�
�	2 /4—i.e., �0�	 /2. If this is the case, then 	2x�2 /4
�	2 /4��0

2�
; hence, the relation 
+ �	2x�2 /4�=� appear-
ing above reduces simply to 
��.

Consequently, if 2�0�	, the ground states of Eq. �3� for
t�0 and of Eq. �25� for t�0 coincide, implying that the full
solution is simply ��x� ,���=��x��e−i
�� and that ���0,����
=1. We note that ��x�� has negative curvature right up to the
wall, as is indeed expected in the case 2�0�	, as we have
already explained earlier.

Let us illustrate this result in the case of 	=15, a value
that would belong to the regime of the sudden approximation
if �0 were zero. The solid curve in Fig. 9 represents the
numerically obtained solution ��x�� of Eq. �3�, with �0

0.2 0.4 0.6 0.8 1 x′
0.2

0.4

0.6

0.8

1

�ϑ�

FIG. 7. The solid curve corresponds to the numerically obtained
ground state of Eq. �25� for �=64, �0=7.2946533, 	=30, and
2�0 /	=0.486, while the dashed curve corresponds to the Thomas-
Fermi approximation of Eq. �27�.
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1

s

FIG. 8. The location of the inflection point s of the ��x�� of Eq.
�25� as a function of 2�0 /	 for 	=20.
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0.2
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0.8

1
�ϑ�

FIG. 6. The solid curve corresponds to the numerically obtained
ground state of Eq. �25� for �=400, �0=19.97165, 	=30, and
2�0 /	=1.33, while the dashed curve corresponds to the Thomas-
Fermi approximation of Eq. �27�.
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ζ

FIG. 9. The solid curve represents the numerically obtained so-
lution ��x�� of Eq. �3�, with 
=400 and �0=19.99999999971558,
while the dashed curve represents the numerically obtained solution
��x�� of Eq. �25� for �0=19.99999999971558, 	=15, and �
=400.2815489. The two curves almost coincide, the ratio 2�0 /	
being 2.66.
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�20 and 
=400, while the dashed curve represents the nu-
merically obtained solution ��x�� of Eq. �25� for �0�20,
	=15, 2�0 /	=2.66, and �=400.281 548 9. The numerical
solution for ��x�� was obtained by using the explicit Runge-
Kutta method, the value of �0 having been found iteratively
so as to satisfy ��1�=0, while the numerical solution for
��x�� was obtained by using the explicit Runge-Kutta
method for the very same value of �0, the value of � having
been found iteratively so as to satisfy ��1�=0. We see that
these curves are quite close to each other, even though the
ratio 2�0 /	�2.66 is not too large.

In contrast, the numerically obtained solution ��x�� of Eq.
�3�, with 
=16 and �0=3.784 41, represented by the solid
curve in Fig. 10, does not coincide at all with the numerically
obtained solution ��x�� of Eq. �25� for �0=3.784 41, 	=15,
2�0 /	=0.5046, and �=23.329 54, represented by the dashed
curve in the same figure.

The crucial role of the parameter 2�0 /	 is thus illustrated
most clearly.

We can verify this result analytically by using the piece-
wise linearization of the cubic term in Eq. �25�. If we per-
form a piecewise linearization of this cubic term, we obtain

d2�

dx�2 +
1

x�

d�

dx�
−

	2x�2

4
� + �� = �0

2�a� + b� �30�

if �0���1 and

d2�

dx�2 +
1

x�

d�

dx�
−

	2x�2

4
� + �� = c�0

2� �31�

if 0����0.
Let us assume now that ��R�=�0. Let the solution be

�in�x�� for 0�x��R, satisfying Eq. �30�, and �out�x�� for R
�x��1, satisfying Eq. �31�.

We can find an approximate partial solution to the inho-
mogeneous linear differential Eq. �30�. Indeed, let us define
the new variable

s =
1

a�0
2 − � + 	2x�2/4

. �32�

For large �0 the variable s is small. Then, if we rewrite
Eq. �30� in terms of s we can see that a partial solution is

− b�0
2s − b	2�0

2s3. �33�

The homogeneous part of Eq. �30� can be solved in terms
of confluent hypergeometric M functions. We thus obtain the
approximate result �for large �0�

�in�x�� � − b�0
2s − b	2�0

2s3

+ e−	x�2/4M�1

2
+

a�0
2 − �

2	
,1,

	x�2

2
�

��1 +
b�0

2

a�0
2 − �

+
b	2�0

2

�a�0
2 − ��3� . �34�

This expression satisfies the differential equation �30�, as
well as the condition �in�0�=1. Note that it does not involve
the confluent hypergeometric U function, since U becomes
infinite at the origin.

Similarly, Eq. �31� can be solved in terms of confluent
hypergeometric functions, yielding

�out = c1e−	x�2/4M�1

2
+

c�0
2 − �

2	
,1,

	x�2

2
�

+ c2e−	x�2/4U�1

2
+

c�0
2 − �

2	
,1,

	x�2

2
� . �35�

The unknown parameters are R, c1, c2, and �. These pa-
rameters will be determined by the conditions

�out�1� = 0,

�in�R� = �0,

�out�R� = �0,

d�in�R�
dx�

=
d�out�R�

dx�
. �36�

When these conditions are satisfied, expressions �34� and
�35� yield a very good emulation of the ground-state solution
of Eq. �25�, as shown in Fig. 11, where the numerically ob-
tained solution of Eq. �25� for �0=8.999 490 7, 	=5, and
�=81.155 759, given by the solid line, coincides almost per-
fectly with the simulacrum given by the dashed line for the

0.2 0.4 0.6 0.8 1 x′
0.2

0.4

0.6

0.8

1
Ζ

Θ

FIG. 10. The solid curve represents the numerically obtained
solution ��x�� of Eq. �3�, with 
=16 and �0=3.78441, while the
dashed curve represents the numerically obtained solution ��x�� of
Eq. �25� for �0=3.78441, 	=15, 2�0 /	=0.5046, and �
=23.32954.

0.2 0.4 0.6 0.8 1 x′
0.2

0.4

0.6

0.8

1

θ

FIG. 11. The numerically obtained solution of Eq. �25� for �0

=8.9994907, 	=5, and �=81.155759, given by the solid line, and
the analytic simulacrum of Eqs. �34� and �35� for the model values
�0=8.9994907, 	=5, �=80.7789, R=0.869837, c1=−0.539477,
and c2=0.00580057, given by the dashed line.
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model values �0=8.999 4907, 	=5, �=80.7789, R
=0.869 837, c1=−0.539 477, and c2=0.005 800 57. This
piecewise linearization is quite reliable for any values of �0
and 	.

Let us show now that the analytic simulacra of Eqs. �3�
and �25� coincide when 2�0 /	�1 and �0�1, by showing
that the solutions of Eqs. �5� and �6� coincide with the solu-
tions of Eqs. �30� and �31�, even though 	 may be large.

Since �0�1, we can drop the s3 terms in Eq. �34�, which
then simplifies to

�in�x�� � − b�0
2s + e−	x�2/4M�1

2
+

a�0
2 − �

2	
,1,

	x�2

2
� �0

2 − �

a�0
2 − �

.

�37�

However, for large a, M�a ,1 ,z��ez/2J0��2z−4az� �13�.
Hence this equation reduces to

�in�x�� � − b�0
2s + I0�x��a�0

2 − ��
�0

2 − �

a�0
2 − �

. �38�

Furthermore, for large a we have U�a ,1 ,z����1
−a�ez/2�cos��a�J0��2z−4az�−sin��a�Y0��2z−4az�� �13�.
Consequently Eq. �35� reduces to a linear combination of
J0�x���−c�0

2� and Y0�x���−c�0
2�. Then the requirements

�out�R�=�0 and �out�1�=0 yield

�out�x�� � �0
J0�x���Y0��� − J0���Y0�x���
J0�R��Y0��� − J0���Y0�R��

, �39�

where �=��−c�0
2.

The fact that �in�R�=�0, even though for large �0 the
Bessel function I0 in Eq. �38� becomes huge, can only imply
that ���0

2. Therefore �=��−c�0
2��0

�1−c�k. Further-
more, Eq. �39� yields �out� �R��−��0 cot��−R�� and

�out�x�� � �0� R

x�

sin���1 − x���
sin���1 − R��

. �40�

We note that the �out�x�� of Eq. �40� has always got an in-
flection point at 1−x��4/ �1+4�2�, for large �0. This inflec-
tion point is right on the wall, as seen already in Fig. 8.

As for the inner region, the use of Eq. �38� at the point
x�=R gives

�0 �
− b�0

2

a�0
2 − � + 	2R2/4

+ I0�R�a�0
2 − ��

�0
2 − �

a�0
2 − �

. �41�

However, we are examining the case 2�0�	. Hence Eq.
�41� becomes

�0 − 1

I0�R�a�0
2 − �0

2�
�

�0
2 − �

a�0
2 − �

. �42�

Given that 2�0�	, we note now that the combination of
Eqs. �42� and �38� yields the expression

�in�x�� � 1 + I0�x��− b�0
2�

�0 − 1

I0�R�− b�0
2�

. �43�

This expression yields �in� �R���0
�−b��0−1�. Then the con-

tinuity of the slope of � at R requires

�0
�− b�1 − �0� = ��0 cot�� − R�� . �44�

The solution of this equation is R=x0, where x0 is given in
Eq. �13�. Consequently Eq. �39� yields a �out identical to the
�out of Eq. �11�, since R=x0. So � and � are identical in the
outer region, when �0 is large.

We also note that Eq. �7� reduces to

0.2 0.4 0.6 0.8 1 x′
0.2

0.4

0.6

0.8

1

�ϑ�

FIG. 12. The numerical solutions for the wave function
���x� ,���� for 
=400, �0=19.99999999971558, 	=17, and
2�0 /	=2.35 for times ��=0 and ��=� / �2	�. The solid curve cor-
responds to the time ��=0, while the dashed curve corresponds to
the time ��=� / �2	�.
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FIG. 13. The numerical solutions for the wave function
���x� ,���� for 
=25, �0=4.93315, 	=17, and 2�0 /	=0.58 for
times ��=0 and ��=� / �2	�.
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FIG. 14. The numerical solutions for the wave function
���x� ,���� for 	=17, 
=12, �0=3.05785, and 2�0 /	=0.36 for
times ��=0 and ��=� / �2	�.
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�in�x�� � I0�qx��
�0 − 1

I0�qx0�
+ 1 �45�

when �0 is large, with q2�−b�0
2. We see thus from Eqs.

�45� and �43� that �in and �in are indeed identical, with R
=x0, as long as �0 is large and 2�0�	. Therefore the profile
��x�� of the wave function at t=0 coincides with the station-
ary ground state of Eq. �25� at t�0, provided �0�1 and
2�0�	.

We have thus a very interesting dependence of the behav-
ior of the condensate in the rapidly expanding box on two
parameters �0 and 	. In the linear region, where only 	
counts, small values of 	 correspond to the adiabatic ap-
proximation, while large values of 	 correspond to the sud-
den approximation. Thus, for a rapidly expanding box with
small nonlinearity the condensate does not keep up with the
expanding box and an increasing void is created between the
condensate and the wall of the box. The situation changes
dramatically though when the nonlinearity is substantial,
with 2�0�	. Then, even though the box is expanding rap-

idly, the condensate follows faithfully the moving wall and
spreads uniformly over all of the box. We note that for a
slowly expanding box the condensate always spreads uni-
formly over the whole area, since it does so in the linear case
and the repulsion of the atoms can only strengthen the effect.

Let us now verify our analytic results numerically. In the
region 2�0�	 the wave function spreads all over the box,
with negative curvature, and it always remains in the ground
state, with ���0,����=1, as shown in Fig. 12 for the particular
case of 
=400, �0�20, 	=17, and 2�0 /	=2.35.

As the ratio 2�0 /	 decreases, the condensate covers still
the whole area, but with positive curvature, as shown in Fig.
13 for the particular case of 
=25, �0=4.933 15, 	=17, and
2�0 /	=0.58.

Finally, in the region 2�0�	 the condensate has retreated
to the center of the box and a void has appeared between the
wall and the condensate’s boundary, as shown in Fig. 14 for
the case of 	=17, 
=12, �0=3.057 85, and 2�0 /	=0.36.
This numerical analysis confirms thus that the parameter
2�0 /	 determines whether the wave function will have to
extend all the way up to the wall or not.
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